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Abstract 

Based on the concept of quaternionic extension of general linear group, we consider the case 
of  group extensions using generalised hypercomplex systems such as the Clifford algebra, 
and the Grassman algebra. 

1. Introduction 

As is well known (Gourdin, 1967; Barut & Baczka, 1965) many interesting 
classical Lie groups can be obtained as complex or quaternionic extensions of 
the general real linear group GL(n,R). For example, the groups GL(n, c), 
SL(n, C), U(n-s, s), and O(n, c), can be obtained as complex extensions of 
GL(n, R) or its subgroups, while the groups GL(n, Q), Sp(n-s, s), O(n, Q) are 
obtainable as quaternionic extensions of  GL(n, R). In general the quaternionic 
extensions have much richer algebraic and topological structures than the 
complex extensions, and these in turn are richer than the original real linear 
groups. By studying the structures of the Lie algebras of  these extended groups, 
one arrives at several useful isomorphisms. 

We demonstrate here that all these ideas are amenable to wider generalisations 
based on the use of generalised hypercomplex systems (Van Der Waerden, 1940; 
Littlewood, 1958). We end up with a set of new Lie algebras and new Lie groups 
defined on R n, the detailed structures of which depend on the exact hyper- 
complex system used in defining the extensions of GL(n, R). 

In order to see the basis for these wider generalisations, we review briefly 
the case of  complex and quaternionic extensions of GL(n, R). Defining the 
general real linear group GL(n, R) as the set of regular n x n matrices with real 
coefficients, its Lie algebra gl(n, R) has the infinitesimal generators X(x) which 
can be realised as the differential operators: 

3 
Xrs =xr Ox s (1.1) 
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From this one deduces the defining commutation rules ofgI(n,  R): 

[Xrs, Xtu]  = gstXru - gurXst  (1.2) 

where g is the symmetrical bilinear connection in R n . From this one gets such 
important subalgebras as sl(n, R )  with the generators 

x ' .  = x .  - % g,W'x.  
/7 

satisfying the same commutation relation (1.2), and the pseudoorthogonal algebra 
o(n-s, s), with the commutation relation: 

[Zi i, Zkl] = gjkZil  -- gikZjl  (1.3) 

where Zij = Zij - Xj i  = - Z j i .  

To comptexify this algebra gt(n, R ) ,  the prescription is to introduce the 
complex number space with basis elements: 

(e o, el)  -= (1, 0 (1.4) 

where e~ = eo; el 2 = - 1; and to replace the set of generators ( X }  o fgl (n ,  R )  
by the set 

{x, I,~ 

where 

Xrs = e oXr ~x s = Xr Ox-- G 

and (1.5) 

Ykt  - - =  " - -  = e l X k  Ox 1 IXk 3X 1 

The algebra with the generators (X, Y) is the gl(n, C) algebra, the complex 
extension ofgl (n ,  R) .  Its commutation relations are easily deducible from 
(1.5) to be: 

[x,~. x t . ]  = g ~ , x , .  - gu ,X t~  

[Xrs, Ytu] = gstYru - gurYts  

[ Yrs, Ytu ] = - gstXru + gurX  ts (1.6) 

where g is the bilinear connection in C n. From this we deduce subatgebras like 
U(n - s, s) o fg l (n ,  C). Also we have the algebra of the complex orthogonal 
group O(n, C) obtained as the complex extension of O(n - s, s). Thus if the 
generators of O(n - s, s) are (Zii  }, the generators of O(n, C) will be the doubled 
set 



whe re 

and 
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Zij = X O - Xji with Xij = xi  
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ZtO " = Yii - Yli with Yi] = ixi ax i 

Based on this complexification, we obtain that the Lie algebra of O(n, C) is 
~ven by: 

[Zij ,  Z k l ]  = g j k Z i l  - g i kZ] l  + g i l Z j k  --  g j l Z i k  

[ z . ,  z { , ]  - - g j k Z i l  --  g ikZSl  + gilZftc - gj lZIk 
I t [Zij, Zk l  ] = -- gjkZil + gikZjl -- gilZjk + gjlZilc (1.7) 

2. lsomorphisms 

Useful isomorphisms can now be established between the original real linear 
algebras and the complexified algebras. Arguing that a necessary (though not 
sufficient) condition for isomorphism to exist between two algebras is that 
they must have the same number of generators, one finds the following well- 
known isomorphisms: 

su(2) ~ so(3); 

su(1, t) -~ so(2, 1) ~ sl(2, R )  

so(3, C) ~- so(3, 1) -~ sl( 2, C) 

so(4, C) ~-- so(3, 1) ® so(3, 1) 

su(2, 2) = so(4, 2) 

sl(4, R )  ~- so(3, 3) (2.1) 

For example, to establish isomorphism between sl(n, R )  and so(m - s, s) we 
first find a set of positive integers n and m which wilt satisfy the following 
relation: 

m 
n 2 - 1 = ~ ( m -  1) 

that is 

1 + x / ( g n  2 - 7) 
m = 

2 

Some of the solutions are: 

(i) n = 2, rn = 3, leading to the isomorphism: sl(2, R )  ~ so(3 - s, s) for 
some s. The exact value of s has to be determined by looking at the 
commutation relations of the two Lie algebras. One finds sl(2, R )  
so(2, 1). 

(2.2) 
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(ii) Similarly, we have a solution for n = 4 and m = 6, leading to sl(4, R)  ~-- 
so(6 - s, s), for some s. Again we find that s = 3, so that sl(4, R) 
so(3, 3). 

By setting up such constraint equations between the generators of  any two 
Lie algebras between which we are seeking isomorphism, we can infer all the 
isomorphisms listed above. 

3. Quaternionic Extensions 

We consider next the quaternionic extensions ofgl(n, R).  As is well known, 
just as a complex number is defined in terms of  two basic units (eo, e l )  -= (1, i), 
so also a quaternion is a number defined in terms of  four basic units: e o, e 1 , e 2 
and e3, so that 

3 

q = a o e o  + ~ ajej, / ' = 1 , 2 , 3  (3.1) 
j=l 

Like the complexification unit i, satisfying i 2 = - 1 ,  we have e 7 = - 1 ,  so that 
the conjugate quaternion is to be defined as 

3 

q* = aoe o - ~, ajej 
1=t 

The complete multiplication table for these quaternion units is shown in Table 1 
Now in general if {X} are the generators of  a given Lie algebra, its quatern- 

ionic extension is defined as the Lie algebra with the generators 

{x, Yel, Ye2, Yea } 
where for X = Xrs = xr(O/ax s) 

a 
Yei = (Yei)~* = ejxr ax s,  ] 1, 2, 3 

(3.2) 

The commutation relations of  the new Lie algebra gl(n, Q) can now be obtained 
by using these differential forms for the generators plus the above multiplication 

T A B L E  1 

X e 0 e I e 2 e 3 

e o  e o  e l  e 2 e 3 

e t  e l  - e  0 e 3 -°e  2 

e 2 e2  - e  3 - e  0 e 1 

e3 e 3 e2  - e  I - e  0 

Also eie ] = - e i e i ,  i , ]  = 1 , 2 ,  3, i 4~j. 
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table. We find that the quaternionic extension ofgI(n, R) is the algebra with 
the commutation rules: 

[Xjk, Xlm ] = gklXlm -- gmiXlk 

[Xjto Y(~)m] =gktY}~m)-gmj~ll; ) ce= 1 ,2 ,3  

I~; ~, ~21 =-g~,x~m +gmjx,k, f o r a f ~ e d ~  

I ~ ;  ~, ~21 = -  ~ ( g ~ ¢ , 2  +gmj~Z~, ~*~  (3.3) 

From this one deduces the commutation relations of quaternionic subalgebras 
like the pseudo-symplectic algebra sp(n - s, s) and the orthogonal quatern- 
ionic algebra o(n, Q). Finally we note that one can complexify the gl(n, Q) 
algebra by using the set of generators: 

(X, X I, Yel, yI , ye2, Yfee~, Ye3, yIe3 } 

where 
a 

(XZ)rs = ix~ Ox s 

(r~i)~ = i~jx ~ OxS, /= i, 2, 3 

where i is the complexification unit and ej are quaternion units. 

4. Isomorphisms 

Again by setting up elementary constraint relations between the numbers of 
generators of any two algebras, we obtain a host of new isomorphisms such as: 

sl(2, Q) ~- so(5, 1); sp(2) ~ so(5) 

so(3, Q) = su(3, 1); sp(1, 1) -~ so(4, 1) 

so(4, Q) ~- so(6, 2); sp(1) -~ su(2) -~ so(3) 

sp(1, C) ~ so(3, 1) -~ sl(2, C) 

sp(1, R) ~ sl(2, R) ~ so(2, 1) ~ su(1, 1) 

5. Pauli Extension 

We note that the quaternionic extension of a given Lie algebra as defined 
above, can also be called the Pauli extension of that algebra. This follows from 
the fact that the quaternionic units are in 1-1 correspondence with the Pauti 
units as foUows: 

eo ~+ oo; ej~+ioj, j = 1 , 2 , 3  
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This leads to the familiar two-dimensional representation of a quaternion as : 

q = ( x , y )  = _ y ,  y. 

where x and y are complex numbers. The algebra gl(n, Q) may therefore be 
denoted also by gl(n, P). 

6. Generalisation to Arbitrary Hypercomplex Systems 

Having now reviewed these familiar Lie algebraic extensions, it becomes 
obvious that by using higher hypercomplex systems, one can generate a host 
of new Lie algebraic structures, defined on R n. All that is required, is to use a 
hypercomplex system with a base unit e o among its set of bases, where e 0 has 
to behave like the real number unit. Consider now one such hypercomplex 
system (/4) with bases denoted by 

e o = 1 and el, ] = 1, 2 , . . . ,  n 

We define the H-extension of a given Lie algebra {X} as the algebra gl(n, I-l) 
with the generators 

where 

and 

X, Gl, G2 .... Gn 

3 
X = Xrs = x,, Ox s 

3 
~ =e*xr aX~ 

If we know the multiplication table of the H system, we can deduce the explicit 
commutation relations of the new Lie algebra. 

The associated Lie group may be denoted by GL(n, H) and may be considered 
as the set of n x n matrices in which each coefficient is a hypercomplex number 
h given by 

n 

h= ~ a]e/ 
]=0 

The properties of such n-dim, hypercomplex spaces/_/n are themselves interesting, 
and lead us to consider generalised symplectic geometry'. 

Now by studying the structure of the algebras gl(n, H) we can deduce various 
Lie isomorphisms, and how these results depend on the hypercomplex system 
H used. Since one can immediately think of several hypercomplex systems- 
ranging from a host of Clifford algebras, generalised Clifford algebras, Grassman 
algebras, etc, the problem can easity become complicated. We illustrate how- 
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ever the new features by considering a tractable case-  the case of  Dirac exten- 
sions of  gl(n, R ). 

7. Dirac Hypercomplex System 

We consider Lie algebraic extensions based on the Dirac hypercomplex system. 
This system has sixteen elements: 

1 
1,3'u, 7s,  ~ruv = 2i  (TuTv - 7vTu) and 7uTs 

We shall choose the sixteen units as 

Po = 1 

Pu = 7u, p =  1 , 2 , 3 , 4 ,  5 

[ '6  = --72"[3")'4 

I"7 = "/1"/3'~4 

F8 = --71'~2"Y4 

P9 = 3'17273 

FIO = --/')'I")'2 

P l l  -- --/')'1")'3 

F12  =- - l ' ) ' 1 '~4  

P1 3  = --/"//2 "/3 

[714 = --l~'2 ")'4 

I715 = - - / 7 3 7 4  

The multiplication table of  these Dirac units is as shown in Table 2. 
Analogous to the quaternionic number 

3 
q =(ao,  a) = ~ ajej 

/=0 

one introduces the Dirac hypercomplex number 

15 
D = (ao, a) = Z aft) 

]=0 

Also corresponding to the n-dimensional quaternionic space Qn which is 
equivalent to a 4n-dimensional real vector space R 4n, we can think of  an 
n-dimentionalDirac space D n equivalent to a 16n-dimensional real vector 
space R 16n. In such a space we can consider the norms ana scalar products of  
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two vectors. Thus if  u and v are two vectors in D n, we can introduce a metric 
connection gik in D n such that  

(U, P) = u*igikV k 

To get the norm of  a vector in D n we need to define the conjugate number 
D* given by:  

D *  = (ao ;  a 1 . . . ,  a s ;  - a  6, - a  7 , - a  8, - a g ;  a l o ,  a l l ,  a12,a13, a14,  a15 ) 

so that  
S 9 15 

DD*= Y.a~ + ~ a~ + ~ a~ 
1=o 1=6 j=l o 

We note that  the above form of  D* is determined by  the number o f  the 
basis elements of  the Dirac hypercomplex system with squares equal to +1. 
From the table we see that  F02 to Fs  2 give +1; 1762 to t792 give - 1 ,  while 
F l o  2 to F l s  2 give +1. From these one then constructs complex conjugate of  
the Dirac hypercomplex number D as given above. 

Similarly, we can construct  the product  of  two Dirac numbers. The familiar 
case of  two quaternions is as follows: I f  

3 

q l = ~.. aje] 
1=0 

3 
q2 = ~ bkek 

then k =0 

qlq2 = oeo + ~ aiej boeo + ~, bkek 
i=1 / k=l 

=(aob  o - a . b ; b o a  + a o b  + aAb) 

where we have made use of  the muItiplication table for the quaternionic units. 
In the same way the product  o f  two Dirac hypercomplex numbers DI  and D 2 
can be writ ten as 

,s ~ / l s  \ 

iS IS 
= ~ ~ a j b k D r k  

]=0 k=O 

where the product  PlPk can now be evaluated from the mult ipl icat ion table of  
the Dirac units. 

Finally, corresponding to the 2 x 2 metric representation of a quaternion, 
one writes the 4 x 4 matrix representation of  a Dirac hypercomplex number. 

8. The Lie Algebra gl(n, D) 

We now consider the Dirac extended algebra gl(n, D). The corresponding 
group is GL(n, D), the set o f  n x n matrices with D coefficients. If  we denote 
the generators of  GL(n, R) by (X} where X = Xrs = Xr (3/3xS), then the 



2 7 0  ~'. N. NDILI AND G. C. CHUKWUMAH 

generators o f  Gl(n, D)  will be made up of  the following sixteen sets of  generators 
X a n d  Y(a), a = I,  2, 3 . . . . .  15, where 

X = X~s = x~ Ox s 

and 

Ox s 

Using this form and the multiplication table for the F,~, we deduce the following 
commutation relations for the Lie algebra gl(n, D).  

[Xrs, Xkl]  = gsgXrl  -- g lrXks  

[ ~ ,  Uk] = e(o,)(g~kX~ - g~Xks), 

where e(a) = +1, a = 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15 

O and e(a) = - 1 ,  a = 6, 7, 8, 9 [ ~ ,  ~ ]  = P,,Fex,.g,k ~x z - Pel~,,xeg~ Ox ~ 
(c~ ~ ~). 

Examples: 

[Y~s, Y~k] = i(gsk r / °  +~r..,O,ksj 
[ylrs, Y~t] = i(gsk ylrl 1 + ~lr'- vll,ks) 

[ r¢~, r ~  ] :-i(gskrT,--glrY~ks) 

etc. 

9. I somorph i sms  

Using the principles discussed earlier, one can now look for isomorphisms 
between these new Lie algebraic structures and the familiar classical Lie algebras. 
For example, since the algebra gl(n, D)  has (16n 2 - 1) generators, solving the 
equation: 

m 
16n 2 - 1 = ~ ( m -  1) 

we get one solution: n = 1, m = 6, so that we expect isomorphism between 
SI(1, D)  and So(6  - s, s). As before, one finds the correct value of  the signature 
s by looking at the actual commutation relations of  the two Lie algebras. Other 
isomorphisms can be established in the same way. 
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10. Conclusion 

We now see that given a suitable hypercomplex system one can always 
define generalised extensions of real Lie algebras. In fact one can generate an 
infinite set of  such algebras. The topological properties of the associated Lie 
groups GL(n, H) and the hypercomplex geometry of the H n spaces, are of 
interest and will be discussed in a subsequent paper. 
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