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Abstract

Based on the concept of quaternionic extension of general linear group, we consider the case
of group extensions using generalised hypercomplex systems such as the Clifford algebra,
and the Grassman algebra.

1. Introduction

As is well known (Gourdin, 1967; Barut & Baczka, 1965) many interesting
classical Lie groups can be obtained as complex or quaternionic extensions of
the general real linear group GL(n,R). For example, the groups GL(n, ¢),

SL(n, C), U(r-s, 5), and O(n, ¢), can be obtained as complex extensions of
GL(n, R) or its subgroups, while the groups GL(n, Q), Sp(n-s, ), O{n, Q) are
obtainable as quaternionic extensions of GL{n, R). In general the quaternionic
extensions have much richer algebraic and topological structures than the
complex extensions, and these in turn are richer than the original real linear
groups. By studying the structures of the Lie algebras of these extended groups,
one arrives at several useful isomorphisms.

We demonstrate here that all these ideas are amenable to wider generalisations
based on the use of generalised hypercomplex systems {Van Der Waerden, 1940;
Littlewood, 1958). We end up with a set of new Lie algebras and new Lie groups
defined on R”, the detailed structures of which depend on the exact hyper-
complex system used in defining the extensions of GL{n, R).

In order to see the basis for these wider generalisations, we review briefly
the case of complex and quaternionic extensions of GL(n, R). Defining the
general real linear group GL(n, R) as the set of regular n x n matrices with real
coefficients, its Lie algebra gl(n, R) has the infinitesimal generators X(x) which
can be realised as the differential operators:

erzxr&_s 1.1
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From this one deduces the defining commutation rules of gl(n, R):
[Xess Xtul = 856 Xou — urXss (1.2)

where g is the symmetrical bilinear connection in R™. From this one gets such
important subalgebras as sl(n, R) with the generators

, 1
Xpg = Xy — ;grsgsrer

satisfying the same commutation relation (1.2), and the pseudoorthogonal algebra
o(n-s, s), with the commutation relation:

[Zijs Zil = gixZin — &8ixlin (1.3)

where Z;; = Z; — Xji = — Z;.
To complexify this algebra gl(n, R), the prescription is to introduce the
complex number space with basis elements:

(€9, 1) =(1,0) (1.9

where e2 = eq; 7 = — 1;and to replace the set of generators {X} of gl(n, R)
by the set

{X, Y}
where
Ko =00k 5 =51 5
ax’ ox®
and (1.5)

0
Yk1=e Xg =ixk
1K st axt

The algebra with the generators {X, Y} is the gi(n, C) algebra, the complex
extension of gl(n, R). Its commutation relations are easily deducible from
(1.5) to be:

[Xiss Xeu) = 8stXou — BurXss
[er, Ytu] =gstYru _gurYts
[Yieo Yeul = — 8eXpu t 8urXss (1.6)

where g is the bilinear connection in C”. From this we deduce subalgebras like
Uln - s, 5) of gl(n, C). Also we have the algebra of the complex orthogonal
group O(n, C) obtained as the complex extension of O(xn — s, §). Thus if the
generators of O(n — s, s) are {Z;; }, the generators of O(n, C) will be the doubled
set

(Zy, Z}
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where ] 3
Zij = Xjj — Xji with Xi'=xi'a‘x7
and
. .0
Z{I = YU - in with Yi' =1X; _a;']’

Based on this complexification, we obtain that the Lie algebra of O(x, C) is
given by:

Zijs Zii) = ginZin — gl + 8uZix — &1 Zix

(Zij, Zki) = ginZh — gy + gl — g Zix

(25, 2k = — ginZi + 8t — gaZin * & ik (1.7

2. Isomorphisms

Useful isomorphisms can now be established between the original real linear
algebras and the complexified algebras. Arguing that a necessary (though not
sufficient) condition for isomorphism to exist between two algebras is that
they must have the same number of generators, one finds the following well-
known isomorphisms:

su(2) = s0(3);

su(l, 1) =s0(2, 1) =si(2,R)

50(3, Cy=s50(3, 1) =sl(2, O)

so{4, O) = s50(3, 1} ® so(3, 1)

su(2, 2) = s0(4, 2)

si(4, R) = 50(3, 3) (2.1)

For example, to establish isomorphism between si(n, R) and so(m — s, §) we
first find a set of positive integers n and m which will satisfy the following
relation:

2 =
w2 l=—m-1
3 (m—1)
that is

- V(@ - 7).

> (2.2)

Some of the solutions are:

(i) n =2, m =3, leading to the isomorphism: s(2, R) = so(3 — s, 5) for
some s. The exact value of s has to be determined by looking at the
commutation relations of the two Lie algebras. One finds si(2, R) =
s0(2, ).
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(ii) Similarly, we have a solution for n = 4 and m = 6, leading to si(4, R) =
50(6 — s, ), for some s. Again we find that s = 3, so that si(4, R) =
so(3, 3).

By setting up such constraint equations between the generators of any two
Lie algebras between which we are seeking isomorphism, we can infer all the
isomorphisms listed above.

3. Quaternionic Extensions

We consider next the quaternionic extensions of gi(n, R). As is well known,
just as a complex number is defined in terms of two basic units (eq, €;) = (1, i),
so also a quaternion is a number defined in terms of four basic units: eg, €;, €,
and e, so that

3
q =ageq +‘Z1 ajej, i=1,2,3 (3.1)
f=

Like the complexification unit 7, satisfying i* = —1, we have ¢f =1, so that
the conjugate quaternion is to be defined as

3
q* =ageq — 2, 4¢;
=1
The complete multiplication table for these quaternion units is shown in Table 1
Now in general if { X'} are the generators of a given Lie algebra, its quatern-

ionic extension is defined as the Lie algebra with the generators

{Xa Y81 > Y€29 Y83} (3'2)
where for X = X, = x,(3/0x5)

a .
Yej:(Yej)rs:ejxr 5)}}: j=1,2,3

The commutation relations of the new Lie algebra gi(n, Q) can now be obtained
by using these differential forms for the generators plus the above multiplication

TABLE 1
X €9 €1 =) €3
€g €g €1 €y €3
€y € —€o €3 €2
€3 €y —e3 —eq ey
€3 €3 €2 —€1 —€9

Also €i€j=~e);€i,i,f= 1,2, 3,i=/=j.
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table, We find that the quaternionic extension of gi(n, R) is the algebra with
the commutation rules:

(Xi> Xim] = geiXjm — &miXu

X, Y1 ole](m) gm;Yfrccy) «=1,2,3

[Y{ , Y( | = — gxiXjm + &mjXi, forafixeda

[Y(a), Yin] = €a37(gsz( temiYR),  a#B (3.3)
From this one deduces the commutation relations of quaternionic subalgebras
like the pseudo-symplectic algebra sp(n — s, s) and the orthogonal quatern-

ionic algebra o(n, Q). Finally we note that one can complexify the gl(n, Q)
algebra by using the set of generators:

{X, Xl Ye;v Ygl’ Yez’ Yéz’ Ve, YI }
where

0
(Xl)rs = X, 5;@

(Yeprs =iepy 55, 7=1,2,3

where i is the complexification unit and ¢; are quaternion units.

4. Isomorphisms

Again by setting up elementary constraint relations between the numbers of
generators of any two algebras, we obtain a host of new isomorphisms such as:

sI2, Q@) = s0(5, 1); sp(2) = so(5)
s0(3, 0) = su(3, 1); sp(1, 1) = so(4, 1)
so(4, Q) = 50(6, 2); sp(1) = su(2) =~ s0(3)
sp(1, C) = s0(3, 1) = si(2, O)
sp(1, R) =si(2, R) ~s0(2,1) = su(1, 1)

5. Pauli Extension

We note that the quaternionic extension of a given Lie algebra as defined
above, can also be called the Pauli extension of that algebra. This follows from
the fact that the quaternionic units are in 1-1 correspondence with the Pauli
units as follows:

ey 0g; e; < igy, j=1,2,3
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This leads to the familiar two-dimensional representation of a quaternion as :

4=000)= (—;i f;)

where x and y are complex numbers. The algebra gl(n, Q) may therefore be
denoted also by gi(n, P).

6. Generalisation to Arbitrary Hypercomplex Systems

Having now reviewed these familiar Lie algebraic extensions, it becomes
obvious that by using higher hypercomplex systems, one can generate a host
of new Lie algebraic structures, defined on R". All that is required, is to use a
hypercomplex system with a base unit e, among its set of bases, where eq has
to behave like the real number unit. Consider now one such hypercomplex
system (H) with bases denoted by

ep=1 and e, i=1,2,...,n

We define the H-extension of a given Lie algebra {X} as the algebra gl(n, H)
with the generators

X, Yes Ye, .. Ye,
where
3
X=Xm=x,5;
and

Ye]. = €jXy 5;;
If we know the multiplication table of the H system, we can deduce the explicit
commutation relations of the new Lie algebra.
The associated Lie group may be denoted by GL{n, H) and may be considered
as the set of n x n matrices in which each coefficient is a hypercomplex number
h given by

n
h= z aje]-
j=0
The properties of such n-dim. hypercomplex spaces H” are themselves interesting,
and lead us to consider generalised symplectic geometry.
Now by studying the structure of the algebras gl(n, H) we can deduce various
Lie isomorphisms, and how these results depend on the hypercompiex system
H used. Since one can immediately think of several hypercomplex systems—
ranging from a host of Clifford algebras, generalised Clifford algebras, Grassman
algebras, ete, the problem can easily become complicated. We illustrate how-
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ever the new features by considering a tractable case— the case of Dirac exten-
stons of gi(n, R).

7. Dirac Hypercomplex System

We consider Lie algebraic extensions based on the Dirac hypercomplex system.
This system has sixteen elements:

1
L Vs Y55 Opw 5% (ruYe — Yrw) and  vuvs

We shall choose the sixteen units as

Te=1
Ty=v. 1=1,2,3,4,5
e = 727374
7 =717374
s =—71727a
Lo =717273

Fio=—iv172

Fii=—imvs
T2 =—iv174

i3 =—ivz7s

Uig =~iv274

Fys=—iv374

The multiplication table of these Dirac units is as shown in Table 2.
Analogous to the quaternionic number

3
q=(ag,3) =2 aje;
=0

one introduces the Dirac hypercomplex number
15

D= (am a) = Z (l]F]
j=0

Also corresponding to the n-dimensional quaternionic space 0" which is
equivalent to a 4n-dimensional real vector space R4*, we can think of an
n-dimentional Dirac space D" equivalent to a 16n-dimensional real vector
space R167_In such a space we can consider the norms and scalar products of
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two vectors, Thus if u and v are two vectors in D”, we can introduce a metric
connection gj in D” such that

(u, v) = “*igika

To get the norm of a vector in D we need to define the conjugate number
D* given by:

D*=(ag;ay ...,a5;—g, —7, —0g, —0g;d10,211,212,%13, 414, 015)

so that
9 15

5
DD*= 3 a} +3 af + 3 a&f
j=0 i=6 j=10

We note that the above form of D* is determined by the number of the
basis elements of the Dirac hypercomplex system with squares equal to *1.
From the table we see that ['y? to I's2 give +1; ['42 to I'g? give —1, while
Ty0? to I'y52 give +1. From these one then constructs complex conjugate of
the Dirac hypercomplex number D as given above.

Similarly, we can construct the product of two Dirac numbers. The familiay
case of two quaternions is as follows: If

3
q:1=2 a;e;
j=0

3
q42= 2 brex
k=
then 0
3 3
4142 =(a0e0 +2 ﬂjej) (boeo +2 bkek)
j=1 k=1

= (llobo - a b, boa +a0b + a/\b)

where we have made use of the multiplication table for the quaternionic units.

In the same way the product of two Dirac hypercomplex numbers Dyand D,
can be written as

15 15
= z Z aibkF,I”‘k
7=0 k=0

where the product I';I'y can now be evaluated from the multiplication table of
the Dirac units.

Finally, corresponding to the 2 x 2 metric representation of a quaternion,
one writes the 4 x 4 matrix representation of a Dirac hypercomplex number.

8. The Lie Algebra gl(n, D)

We now consider the Dirac extended algebra gi(n, D). The corresponding
group is GL{n, D), the set of n x n matrices with D coefficients. If we denote
the generators of GL(n, R) by {X} where X = X, = x, (3/0x5), then the
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generators of GI(rn, D) will be made up of the following sixteen sets of generators
Xand Y, a=1,2,3,..., 15, where
X=Xy =y 2
and
Y = (), = Tx,

ax®

Using this form and the multiplication table for the T, we deduce the following
commutation relations for the Lie algebra gl(n, D).

[Xrss Xnt] = g5k Xr1 — 81rXks
Xrs, Yir] =g Y71 — 80 Vis
Y%, Y5 = e(e)gercXsr — g1rXis)»
where e(0) =+1,a=1,2,3,4,5,10,11,12,13, 14, 15

0 0
[Y?Sa Ygl] =T lsx,80n Q — Tglexp g g;} and e(e) =—1,0=6,7,8,9
(a#B).

Exarples:
[Yhe Y] = igssc Y3 + 81, YAS)
(Y75, Y] =ilgs Y7l + g1 Vi
[Yis, YR =g V71 — 21, YiS)
(Y75, Yiil = =g Y71 — 81 Yies)

etc.

9. Isomorphisms

Using the principles discussed earlier, one can now look for isomorphisms
between these new Lie algebraic structures and the familiar classical Lie algebras.
For example, since the algebra gl(#, D) has (16n2 — 1) generators, solving the
equation:

16n2 —~l=’~72~1(m-1)

we get one solution: n = 1, m = 6, so that we expect isomorphism between
SI(1, D) and So(6 — s, 5). As before, one finds the correct value of the signature
s by looking at the actual commutation relations of the two Lie algebras. Other
isomorphisms can be established in the same way.
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10. Conclusion

We now see that given a suitable hypercomplex system one can always
define generalised extensions of real Lie algebras. In fact one can generate an
infinite set of such algebras. The topological properties of the associated Lie
groups GL(n, H) and the hypercomplex geometry of the H” spaces, are of
interest and will be discussed in a subsequent paper.
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